

Математические основы
информационной

безопасности

Груздев Дмитрий Николаевич

Ускорение обучения
моделей

Как можно ускорить обучение
Ускорение вычислений

● распараллеливание вычислений
● специальные вычислители

Улучшенные алгоритмы обучения
● стохастический градиент
● метод моментов
● метод Нестерова
● оптимизаторы: adam, adagrad

Распараллеливание вычислений
Типы распараллеливания:

Несколько ядер и
процессоров на одном
устройстве.

Несколько вычислителей,
соединенных в сеть.

CPU vs GPU
CPU GPU

Название Central processing
unit

Graphics processing
unit

Предназначение любые задачи обработка графики

Набор команд расширенный специализированный

Количество ядер ~ от 2 до 8 ~3000

Тактовая частота 2500 – 4000 МГц 900 – 1100 МГц

Вычислительная мощность ~10GFLOP ~100GFLOP

Скорость доступа к памяти ~6 GB/s ~40GB/s

Работа с GPU
Исходная задача разбивается на ряд подзадач, каждая из
которых решается абсолютно независимо (т.е. никакого
взаимодействия между подзадачами нет) и в произвольном
порядке.

Программные технологии для работы с GPU:

● CUDA – для работы с NVIDEA

● OpenCL – кросплатформенная

Умножение вектора на матрицу

Параллельное умножение матриц

Ленточная схема разделения данных.

Переход к матричным вычислениям
Matlab, tensorflow и другие вычислительные среды не могут распараллелить вычисления
значений в цикле.

По возможности необходимо представлять вычисления в матричном виде.

Примеры:

1. Линейная регрессия, метод градиентного спуска:

for (j = 1; j ≤ n; j++)
Δθj = -α*Σ1≤i≤m(<θ,xi> - yi)*xi

(j); - плохо

Δθ = XT(X*θ – y); – хорошо (Xmxn – матрица объекты-признаки)

2. Нейронные сети, прямое распространение сигнала:

for (j = 1; j ≤ Hk+1; j++)
yj

(k+1) = σj
(k+1)(Ʃ0≤i≤HkΘij

(k)*yi
(k)); - плохо

y(k+1) = σ(k+1)(Θ(k)*y(k)); - хорошо (Θ(k) – матрица весов k-го слоя)

Оптимизация
в программных пакетах

Параллельные
вычисления

Работа с GPU

Numpy - -

SciPy - -

Skikit-learn +/- -

PyTorch + +

Tensorflow + +

Matlab, Octave + -

Нейросети на ПЛИС
Программируемая логическая интегральная схема:

● Высокое быстродействие.
● Низкое энергопотребление.
● Подходит только для использования нейросетей

(обучение проводится в другом месте).
● Сложность программирования.

Нейросети на ASIC
Application-Specific Integrated Circuit:

● Самая низкая стоимость чипа.
● Самое низкое энергопотреблении.
● Высокая скорость работы.
● Только использование нейросетей (без обучения).
● После изготовления нельзя вносить изменения.
● Сложный и дорогой техпроцесс разработки.

TPU
Tensor Processing Unit

● Аппаратное ускорение скорости обучения нейросети.
● Высокая скорость работы нейросети.
● Оптимизированы для работы в кластерах.
● Низкое энергопотребление (по сравнению с GPU).
● В основном используются через облачные вычисления,

т.к. требуется специальное оборудование.
● Молодая технология (представлена с 2017 г.)

Сетевые распределенные
вычисления

Линейная регрессия:
● Θ = Θ – α*XT*(X*Θ – y)
● XT*(X*Θ – y) = ∂
● m = 1000
● Разобьем X и y на части в

соответствии с количеством
компьютеров в сети.

● Каждый компьютер сделает
свою часть вычислений. ∂

i
 = X

i
T*(X

i
*Θ – y

i
)

∂ = Σ∂
i

Заблуждения распределенных
вычислений

● Сеть надежна.
● Задержка нулевая.
● Пропускная способность бесконечна.
● Сеть безопасна.
● Топология не меняется.
● Администратор только один.
● Стоимость пересылки нулевая.
● Сеть однородна.

Закон Амдала
«В случае, когда задача разделяется на
несколько частей, суммарное время её
выполнения на параллельной системе не
может быть меньше времени выполнения
самого медленного фрагмента»

α – доля вычислений, во время выполнения
которых невозможно распараллеливание

p – количество вычислительных узлов

Ускорение производительности не
превышает

Стохастический градиентный спуск
В методе градиентного спуска минимизируется функция ошибки по всей
обучающей выборке. Это позволяет вычислить точное значение градиента,
но требует больших вычислений.

Небольшая случайная подвыборка обучающей выборки даст примерно то
же направление, но потребует гораздо меньшее количество вычислений.

Стохастический градиентный спуск:
● разбить обучающую выборку на части (minibatch) и осуществить по

одной итерации градиентного спуска для каждой из частей (проход всех
подвыборок обучающей выборки называется эпохой (epoch) обучения)

● повторять этот процесс, переразбивая обучающую выборку случайным
образом

Размер минибатчей обычно от 1 до 100 элементов.

Градиент с моментами
Δθt = γ*Δθt-1 – η*dE/dθ

● Сохраняет направление изменения весов с инерцией γ.

● При малом γ совпадает со стахостическим градиентом.

● Позволяет преодолевать небольшие локальные минимумы.

● Обычно γ ~ 0.9

Ускоренные градиенты Нестерова
Δθt = γ*Δθt-1 – η*dE(θt-1+γ*Δθt-1)/d(θt-1+γ*Δθt-1)

● Градиент вычисляется не в точке, где сейчас находимся, а в
точке по направлению изменения весов.

● Позволяет быстрее двигаться, если произодная в
направлении движения увеличивается.

● Можно так ускориться, что перескочить область минимума.

Adagrad
gt ≡ dE(θt)/dθt; Gt = Gt + g2

t

● Алгоритм накапливает информацию о том, как часто изменяется
соединение в величине Gt.

● После продолжительного обучения эти связи почти не
изменяются, а изменяются редко задействованные связи.

● Благодаря этой идее соразмерный вклад в обучение вносят редко
встречающиеся, но важные признаки.

Adam
Сочетает в себе идею накопления движения и идею более
слабого обновления весов типичных признаков.

mt = β1mt-1 + (1 – β1)gt

vt = β2vt-1 + (1 – β2)g2
t

https://sesc-infosec.github.io/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

